Math, asked by cm4976862, 4 months ago

factorise
x^4 - 16 y^4
xxx

Answers

Answered by ITZBFF
22

 \mathsf \red{Given \: equation :   \:  \: } \mathsf{ {x}^{4}  - 16 {y}^{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  } \\  \\  \mathsf \pink{Rewrite \:  {x}^{4} \: as \: { {(x}^{2}) }^{2}  \:  \:   and \:  \: 16 {y}^{4} \: as \:  { {(4y}^{2} )}^{2}  } \\  \\  \mathsf{ =  \:  { ({x}^{2} )}^{2}  -  {( {4y}^{2} )}^{2} } \\  \\  \mathsf \red{it \: is \: in \: the \: form \: of \: following \: identity :  \:  \: } \\  \\   \boxed{\mathsf \blue{ {a}^{2}  -  {b}^{2}  = (a + b).(a - b)}} \\  \\  \mathsf{so :  \:  \:  \: ({x}^{2}  + 4 {y}^{2} ) \: .  \: ( {x}^{2}  - 4 {y}^{2}) } \\  \\  \mathsf \red{Again \:  \: ( {x}^{2}  - 4 {y}^{2}) \:  \: is \: in \: the \: form \: of \:  {a}^{2} -  {b}^{2}  } \\  \\  \mathsf{( {x}^{2}  + 4 {y}^{2}) \: . \: (x + 4y).(x - 4y) } \\  \\  \boxed{ \mathsf \green{{x}^{4}  - 16 {y}^{4} =( {x}^{2}  + 4 {y}^{2}) \: . \: (x + 4y).(x - 4y) }}

Similar questions