factorise x^4 + 3х^2 + 4
Answers
Answered by
2
Answer:
BRAINLEST!!
The given expression:
x^4 + 3x^2 + 4
We have to find, the factorisation of x^4 + 3x^2 + 4 is:
Solution:
∴ x^4 + 3x^2 + 4
Adding and subtracting x^2, we get
= x^4 + 3x^2 + 4 + x^2 - x^2
= x^4 + 4x^2 + 4 - x^2
= [(x^2)^2 + 2(x^2)(2) + 2^{2}] - x^2
Using the algebraic identity:
(a+b)^{2} =a^{2} +2ab+b^{2}
= (x^2+2)^{2}-
Using the algebraic identity:
a^{2} -b^{2} = (a + b)(a - b)
= (x^2 + 2 + x)(x^2 + 2 - x)
= (x^2 + x + 2 )(x^2 - x + 2)
∴ The factorisation of x^4 + 3x^2 + 4 = (x^2 + x + 2 )(x^2 - x + 2)
Thus, the factorisation of x^4 + 3x^2 + 4 is equal to "(x^2 + x + 2 )(x^2 - x + 2)".
Similar questions