Math, asked by aravind312007, 1 year ago

Factorise x^4-(x-z)^4​

Answers

Answered by MaheswariS
0

\textbf{Given:}

x^4-(x-z)^4

=(x^2)^2-((x-z)^2)^2

\text{using}

\boxed{\bf\;a^2-b^2=(a-b)(a+b)}

=(x^2-(x-z)^2)(x^2+(x-z)^2)

\text{using}

\boxed{\bf\;(a-b)^2=a^2+b^2-2ab}

=(x^2-(x^2+z^2-2xz))(x^2+(x^2+z^2-2xz))

=(x^2-x^2-z^2+2xz)(2x^2+z^2-2xz)

=(-z^2+2xz)(2x^2+z^2-2xz)

=(2xz-z^2)(2x^2+z^2-2xz)

=z(2x-z)(2x^2+z^2-2xz)

\implies\bf\;x^4-(x-z)^4=z(2x-z)(2x^2+z^2-2xz)

Find more:

X2-(a-1/a)x+1 factorise the following

https://brainly.in/question/4301404#

Similar questions