Math, asked by jd10, 7 months ago

factorise x^4-y^4 using indentities​

Answers

Answered by Choco1234
0

Answer:(x-y)^4

Step-by-step explanation:

Answered by ItzRisingStar
27

{\huge{\underline{\underline{\sf{\blue{Solution:-}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

{\large{\underline{\underline{\sf{\orange{We\:know\:that:-}}}}}}

 {a}^{2} -  {b}^{2} = (a - b)(a + b)

{\large{\underline{\underline{\sf{\green{It\:means:-}}}}}}

 {x}^{4} -  {y}^{4} = ({x}^{2})^{2} -  ({y}^{2})^{2}

\large\bf\underline\pink{Using\:Identity:-}

( {x}^{2})^{2} - ({y}^{2})^{2}  = ( {x}^{2}  +  {y}^{2})( {x}^{2} -  {y}^{2})

{\boxed{\pink{\tt{Again\:we\:using\:identity:-}}}}

\bf\underline{So,}

( {x}^{2} -  {y}^{2}) = (x - y)(x + y)

\small\boxed{\fcolorbox{red}{cyan}{Factors\:of\:given\:expression\:are:-}}

 {x}^{4} -  {y}^{4 }  = ( {x}^{2} +  {y}^{2})(x  -  y)(x + y)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\large{\underline{\underline{\sf{\red{Additional\:Imformation:-}}}}}}

(x + y)^{2} =  {x}^{2} +  {y}^{2} + 2xy

(x - y)^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions