Factorise x^6 - 4^6
pls post the right answer.
Answers
Answer:
1 Evaluate the exponent
6−1⋅46
x^{6}-1 \cdot {\color{#c92786}{4^{6}}}x6−1⋅46
6−1⋅4096
x^{6}-1 \cdot {\color{#c92786}{4096}}x6−1⋅4096
2
Multiply the numbers
6−1⋅4096
x^{6}{\color{#c92786}{-1}} \cdot {\color{#c92786}{4096}}x6−1⋅4096
6−4096
x^{6}{\color{#c92786}{-4096}}x6−4096
Solution
6−4096
HOPE IT HELPS YOU
Answer:
( x + 4 ) ( x - 4 ) ( x² + 16 + 4x ) ( x² + 16 - 4x )
Step-by-step explanation:
x⁶ - 4⁶
= ( x³ )² - ( 4³ )²
Formula : -
a² - b² = ( a + b ) ( a - b )
Here,
a = x³
b = 4³
( x³ )² - ( 4³ )²
= ( x³ + 4³ ) ( x³ - 4³ )
x³ + 4³
Formula : -
a³ + b³ = ( a + b ) ( a² + b² - ab )
Here,
a = x
b = 4
x³ + 4³ = ( x + 4 ) ( x² + 4² - 4x )
x³ - 4³
Formula : -
a³ - b³ = ( a - b ) ( a² + b² + ab )
Here,
a = x
b = 4
x³ - 4³ = ( x - 4 ) ( x² + 4² + 4x )
( x³ + 4³ ) ( x³ - 4³ )
= ( x + 4 ) ( x² + 4² - 4x ) ( x - 4 ) ( x² + 4² + 4x )
= ( x + 4 ) ( x² + 16 - 4x ) ( x - 4 ) ( x² + 16 + 4x )
= ( x + 4 ) ( x - 4 ) ( x² + 16 + 4x ) ( x² + 16 - 4x )
Therefore,
x⁶ - 4⁶
= ( x + 4 ) ( x - 4 ) ( x² + 16 + 4x ) ( x² + 16 - 4x )