factorise x square minus 1 minus 2 a minus a square
Answers
Answered by
127
=> x² - 1 - 2a - a² _____[◢given]
=> x² - [1 + 2a + a²]
=> x² - [a² + 2a +1]
=> x² - [a² + a + a + 1]
=> x² - [ a(a+1) + 1(a+1) ]
=> x² - [ (a+1).(a+1) ]
=> x² - (a+1)² _________[◢Eq(1)]
_____________________________
◢NOW
● WE KNOW THAT
=> (A²-B²) = (A+B)(A-B)
___________[◢ALGEBRAIC PROPETY]
_____________________________
● USING THIS PROPERTY FOR Eq(1)
◢THEN,
=> x² - (a+1)²
=> [ {x + (a+1)}.{x - (a+1)} ]
=> [(x+a+1).(x-a-1)]
________________[◢ANSWER]
===================================
☆☆
=> x² - [1 + 2a + a²]
=> x² - [a² + 2a +1]
=> x² - [a² + a + a + 1]
=> x² - [ a(a+1) + 1(a+1) ]
=> x² - [ (a+1).(a+1) ]
=> x² - (a+1)² _________[◢Eq(1)]
_____________________________
◢NOW
● WE KNOW THAT
=> (A²-B²) = (A+B)(A-B)
___________[◢ALGEBRAIC PROPETY]
_____________________________
● USING THIS PROPERTY FOR Eq(1)
◢THEN,
=> x² - (a+1)²
=> [ {x + (a+1)}.{x - (a+1)} ]
=> [(x+a+1).(x-a-1)]
________________[◢ANSWER]
===================================
☆☆
Answered by
1
it is by using the formula a-b whole square
Similar questions