Math, asked by shivangigupta69705, 9 months ago

Factorise , x(x-y)^3+3x^2y(x-y)​

Answers

Answered by Anonymous
15

ANSWER

\sf\dashrightarrow x(x-y)^3+3x^2y(x-y)

✯.USING IDENTITY,

\large{\boxed{\bf{\star\:\: a^2-b^2=(a-b)(a^2+ab+b^2)= (a-b)^3+3ab(a-b) \:\: \star  }}}

\sf\implies x(x-y)^3+3x^2y(x-y)

\sf\implies  x(x-y)(x^2+xy+y^2)

\sf\implies x^4-xy^3=x(x-y)(x^2+xy+y^2) \:---[from\:given\:identity]

\sf\implies  x(x-y)(x^2+xy+y^2)

\large{\boxed{\bf{\star\:\: x(x-y)(x^2+xy+y^2) \:\: \star  }}}

________________

Answered by ItzCaptonMack
1

\large\underline{\underline{\bold{\pink{\mathfrak{AnSwEr}}}}}ANSWER✔

\sf\dashrightarrow x(x-y)^3+3x^2y(x-y)

USING IDENTITY,

\rm{\boxed{\bf{\star\:\: a^2-b^2=(a-b)(a^2+ab+b^2)= (a-b)^3+3ab(a-b) \:\: \star  }}}

\sf\implies x(x-y)^3+3x^2y(x-y)

\sf\implies  x(x-y)(x^2+xy+y^2)

\sf\implies x^4-xy^3=x(x-y)(x^2+xy+y^2) \:---[from\:given\:identity]

\sf\implies  x(x-y)(x^2+xy+y^2)

\large{\boxed{\bf{\star\:\: x(x-y)(x^2+xy+y^2) \:\: \star  }}}

Similar questions