Math, asked by rajputnishakanak, 8 months ago

factorise (x-y)^3 + (y-z)^3 + (z-x)^3 solution​

Answers

Answered by mysticd
0

/* We know that */

 If \: a + b + c = 0 \:then

 a^{3} + b^{3}+c^{3} = 3abc

 Here, a = x - y , b = y - z \:and \: c = z - x

 a + b + c = x - y + y - z + z - x

 = 0

 Now, a^{3} + b^{3} + c^{3}

= (x-y)^3 + (y-z)^3 + (z-x)^3

 = 3(x-y) (y-z) (z-x)

Therefore.,

\red{ Factors \: of \: (x-y)^3 + (y-z)^3 + (z-x)^3}

 \green {= 3(x-y) (y-z) (z-x)}

•••♪

Similar questions