Math, asked by Xverse00, 16 days ago

factorise— (x²-1)² + 8x (x² + 1) + 19x²​

Answers

Answered by s15809adeepshikha033
0

Answer:

Expand the square

(2−1)2+8(2+1)+192

\left(x^{2}-1\right)^{2}+8x(x^{2}+1)+19x^{2}(x2−1)2+8x(x2+1)+19x2

(2−1)(2−1)+8(2+1)+192

(x^{2}-1)(x^{2}-1)+8x(x^{2}+1)+19x^{2}(x2−1)(x2−1)+8x(x2+1)+19x2

2

Distribute

(2−1)(2−1)+8(2+1)+192

{\color{#c92786}{(x^{2}-1)(x^{2}-1)}}+8x(x^{2}+1)+19x^{2}(x2−1)(x2−1)+8x(x2+1)+19x2

(2−1)⋅2−1(2−1)+8(2+1)+192

{\color{#c92786}{(x^{2}-1) \cdot x^{2}-1(x^{2}-1)}}+8x(x^{2}+1)+19x^{2}(x2−1)⋅x2−1(x2−1)+8x(x2+1)+19x2

3

Distribute

(2−1)⋅2−1(2−1)+8(2+1)+192

{\color{#c92786}{(x^{2}-1) \cdot x^{2}}}-1(x^{2}-1)+8x(x^{2}+1)+19x^{2}(x2−1)⋅x2−1(x2−1)+8x(x2+1)+19x2

4−12−1(2−1)+8(2+1)+192

Answered by Kanchankaur
1

Step-by-step explanation:

x^4+8x^3-17x^2+8x+1 is equation and solved it....

Similar questions