factorise— (x²-1)² + 8x (x² + 1) + 19x²
Answers
Answered by
0
Answer:
Expand the square
(2−1)2+8(2+1)+192
\left(x^{2}-1\right)^{2}+8x(x^{2}+1)+19x^{2}(x2−1)2+8x(x2+1)+19x2
(2−1)(2−1)+8(2+1)+192
(x^{2}-1)(x^{2}-1)+8x(x^{2}+1)+19x^{2}(x2−1)(x2−1)+8x(x2+1)+19x2
2
Distribute
(2−1)(2−1)+8(2+1)+192
{\color{#c92786}{(x^{2}-1)(x^{2}-1)}}+8x(x^{2}+1)+19x^{2}(x2−1)(x2−1)+8x(x2+1)+19x2
(2−1)⋅2−1(2−1)+8(2+1)+192
{\color{#c92786}{(x^{2}-1) \cdot x^{2}-1(x^{2}-1)}}+8x(x^{2}+1)+19x^{2}(x2−1)⋅x2−1(x2−1)+8x(x2+1)+19x2
3
Distribute
(2−1)⋅2−1(2−1)+8(2+1)+192
{\color{#c92786}{(x^{2}-1) \cdot x^{2}}}-1(x^{2}-1)+8x(x^{2}+1)+19x^{2}(x2−1)⋅x2−1(x2−1)+8x(x2+1)+19x2
4−12−1(2−1)+8(2+1)+192
Answered by
1
Step-by-step explanation:
x^4+8x^3-17x^2+8x+1 is equation and solved it....
Similar questions
Math,
8 days ago
Science,
8 days ago
Social Sciences,
16 days ago
Hindi,
8 months ago
Math,
8 months ago