Math, asked by ayushpatel2439, 3 months ago

Factorise : x² + 1/x2-3x+3/x

Answers

Answered by naqiyah8
0

Answer:

Given : x

2

+

x

2

1

−2−3x+

x

3

We can further write it as

x

2

+

x

2

1

−2−3x+

x

3

=(x−

x

1

)

2

−3(x−

x

1

)

By taking the common terms out

x

2

+

x

2

1

−2−3x+

x

3

=(x−

x

1

)(x−

x

1

−3)

Answered by vikashpatnaik2009
0

Answer:

STEP

1

:

           3

Simplify   —

           x

Equation at the end of step

1

:

          1       3

 (((x2)+————)-3x)+—

        (x2)      x

STEP  

2

:

            1

Simplify   ——

           x2

Equation at the end of step

2

:

            1            3

 (((x2) +  ——) -  3x) +  —

           x2            x

STEP  

3

:

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  x2  as the denominator :

          x2     x2 • x2

    x2 =  ——  =  ———————

          1        x2    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x2 • x2 + 1     x4 + 1

———————————  =  ——————

    x2            x2  

Equation at the end of step

3

:

  (x4 + 1)           3

 (———————— -  3x) +  —

     x2              x

STEP

4

:

Rewriting the whole as an Equivalent Fraction

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

         3x     3x • x2

   3x =  ——  =  ———————

         1        x2    

Polynomial Roots Calculator :

4.2    Find roots (zeroes) of :       F(x) = x4 + 1

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  1.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        2.00      

     1       1        1.00        2.00      

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

4.3       Adding up the two equivalent fractions

(x4+1) - (3x • x2)     x4 - 3x3 + 1

——————————————————  =  ————————————

        x2                  x2      

Equation at the end of step

4

:

 (x4 - 3x3 + 1)    3

 —————————————— +  —

       x2          x

Step-by-step explanation:

please mark this answer as a brainliest.

Similar questions