Math, asked by palak5147, 1 year ago

Factorise
x2 + 3x -40​

Answers

Answered by Anonymous
19

Answer:

( x + 8 ) ( x - 5 )

Step-by-step explanation:

\large \text{Given $p(x)= x^2+3x-40$}\\\\\\\large \text{we have to factorise it }\\\\\\\large \text{By splitting mid term method $ac = +-b$}\\\\\\\large \text{Here $ -40 = 8 \times- 5$}\\\\\\\large \text{$p(x)= x^2+3x-40$}

\large \text{$p(x)= x^2+8x-5x-40$}\\\\\\\large \text{$p(x)= x(x+8)-5(x+8)$}\\\\\\\large \text{$p(x)= (x+8)(x-5)$}\\\\\\\large \text{Zeroes of p(x)}

\large \text{$x+8=0 \ or \ x-5=0$}\\\\\\\large \text{$x=-8 \ or \ x=5$}

Thus we factorise the p(x) and also get zeroes of it.

Answered by AbhijithPrakash
12

Answer:

\mathrm{Factor}\:x^2+3x-40:\quad \left(x-5\right)\left(x+8\right)

Step-by-step explanation:

x^2+3x-40

\rule{250}{1}

\mathrm{Break\:the\:expression\:into\:groups}

\mathrm{Use\:Middle\:term\:splitting}

=\left(x^2-5x\right)+\left(8x-40\right)

\rule{250}{1}

\mathrm{Factor\:out\:}x\mathrm{\:from\:}x^2-5x

x^2-5x

\rule{250}{0.3}

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

x^2=xx

\rule{250}{0.3}

\mathrm{Factor\:out\:common\:term\:}x

=x\left(x-5\right)

\rule{250}{1}

\mathrm{Factor\:out\:}8\mathrm{\:from\:}8x-40

8x-40

\rule{250}{0.3}

\mathrm{Rewrite\:}40\mathrm{\:as\:}8\cdot \:5

=8x-8\cdot \:5

\rule{250}{0.3}

\mathrm{Factor\:out\:common\:term\:}8

=8\left(x-5\right)

\rule{250}{1}

=x\left(x-5\right)+8\left(x-5\right)

\rule{250}{1}

\mathrm{Factor\:out\:common\:term\:}x-5

=\left(x-5\right)\left(x+8\right)

Similar questions