Factorise :-
(x² - 4x) (x² - 4x - 1) - 20
Answers
Answered by
4
Let (x^2–4x)=p
= p(p-1)-20
= p^2 -p -20
= p^2 -5p + 4p -20
= p (p-5 ) + 4 (p - 5 )
= (p - 5 ) (p + 4 )
put p = x^2 -4x
= (x^2 - 4 x - 5 ) (x ^2 -4 x + 4 )
=[ x^2–5x + x -5 ] ( x - 2 )^2
=[ x (x- 5) +1( x-5 )](x-2)^2
= (x-5) (x + 1) (x - 2 )^2
▲───────◇◆◇───────▲
Answered by
31
Solution -
We have,
➝ (x² - 4x) (x² - 4x - 1) - 20
➝ (x² - 4x) (x² - 4x) - (x² - 4x) - 20
➝ (x² - 4x)² - (x² - 4x) - 29
⠀
Let,
- y = x² - 4x
➝ y² - y - 20
➝ y² - 5y + 4y - 20
➝ y(y - 5) + 4(y - 5)
➝ (y - 5) (y + 4)
⠀
Replacing y by x² - 4x
➝ (x² - 4x - 5) (x² - 4x + 4)
➝ (x² - 5x + x - 5) (x² - 2 × x × 2 + 2²)
➝ {x(x - 5) + 1(x - 5)} (x - 2)²
➝ (x - 5) (x + 1) (x - 2)²
⠀
Identity used here
- (a - b)² = a² + b² - 2ab
━━━━━━━━━━━━━━━━━━━━━━
Similar questions