Factorise x²/8-y²/18 using the identity a² - b² = (a + b) (a - b).
Answers
Answered by
0
Answer:
Step-by-step explanation:
Identity a² - b² = (a + b) (a - b)
Take 1/2 common
Answered by
4
Step-by-step explanation:
= (a + b) (a - b)
\frac{x^2}{8} -\frac{y^2}{18}
8
x
2
−
18
y
2
Take 1/2 common
\begin{gathered}\frac{x^2}{8} -\frac{y^2}{18}\\=\frac{1}{2} (\frac{x^2}{4} -\frac{y^2}{9})\\=\frac{1}{2}[(\frac{x}{4})^2 -(\frac{y}{9})^2]\\=\frac{1}{2} (\frac{x}{4} +\frac{y}{9} )(\frac{x}{4} -\frac{y}{9})\\=\frac{1}{2} (\frac{9x+ 4y}{36} )(\frac{9x- 4y}{36} )\end{gathered}
8
x
2
−
18
y
2
=
2
1
(
4
x
2
−
9
y
2
)
=
2
1
[(
4
x
)
2
−(
9
y
)
2
]
=
2
1
(
4
x
+
9
y
)(
4
x
−
9
y
)
=
2
1
(
36
9x+4y
)(
36
9x−4y
).
Similar questions