Math, asked by Mrxyzwvu, 6 months ago

Factorise : x2 + 9y2 + 422 + 6xy – 12yz – 4xz

Answers

Answered by PharohX
6

Step-by-step explanation:

 \large{ \green{ \underline{  \sf  GIVEN \:  \:  \:   QUESTION   :   - }}}

 \sf \: Factorise :  {x}^{2} + 9 {y}^{2}  + 4 {z}^{2}  + 6xy – 12yz – 4xz

 \large{ \green{ \underline{  \sf SOLUTION   :   - }}}

  \sf \: First \:  \:  arrange \:  \:  the \:  \:  que.

 \sf  We  \: \:  get

 \sf  {x}^{2}  + (3 {y})^{2}  + ( - 2 {z})^{2} + 2(x)(3y)  - 2(3y)(2z) - 2( 2z)(x)

 \sf \: Using  \:  \:  the  \:  \: formula   : -

 \tt \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca

 \tt \:  = ( {a + b + c)}^{2}

 \sf \: Here  \:  \: compare  \:  \: with \: the \: formula :  -

 \sf  We  \: \:  get

 \sf a = x  \:  \: \\  \sf b =3 y

 \sf c =  - 2z

 \sf \: Hence \:  we \:  get :  -

 \sf  {x}^{2}  + (3 {y})^{2}  + ( - 2 {z})^{2} + 2(x)(3y)  - 2(3y)(2z) - 2( 2z)(x)

  \sf  = (x + 3y - 2z )^{2}

 \sf \: Or \:  \:  we \: \:   can \:  \:  write  \: it  \:  \: as  \:  \: factor  \:  \: form

 \sf \:  = (x + 3y - 2z)(x + 3y - 2z)

 \large{ \green{ \underline{ \tt  Additional \:  \: \:   Information :  -  }}}

  \green{ \star}\rm(a + b) {}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

  \green{ \star}\rm(a  - b) {}^{2}  =  {a}^{2}   -  2ab +  {b}^{2}

  \green{ \star}\rm(a   +  b) {}^{3}  =  {a}^{3}   +  {b}^{3}  + 3ab(a + b)

  \green{ \star}\rm(a    -   b) {}^{3}  =  {a}^{3}    -   {b}^{3}  + 3ab(a  -  b)

 \green{ \star}\rm  ( {a + b + c)}^{2}  =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \rm \: ( {a}^{2}   + {b}^{2}  + c {}^{2}  + 2ab + 2bc + 2ca)

 \green{ \star}\rm \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \rm \: (a + b + c)( {a}^{2}  + b {}^{2}  +  {c}^{2}  + ab + bc + ca)

Similar questions