Math, asked by karmakarlakhi555321, 6 months ago

Factorise :- x² - ax - (2a² - 3ab+b²)​

Answers

Answered by mathdude500
0

Answer:

\boxed{\sf \: {x}^{2} - ax - ( {2a}^{2} - 3ab +  {b}^{2}) = (x -2a + b) \: (x + a -  b) \: } \\  \\

Step-by-step explanation:

Given algebraic expression is

\sf \:  {x}^{2} - ax - ( {2a}^{2} - 3ab +  {b}^{2}) \\  \\

\sf \: =  \:   {x}^{2} - ax - [ {2a}^{2} - 2ab  - ab+  {b}^{2}] \\  \\

\sf \: =  \:   {x}^{2} - ax - [2a(a - b)  - b(a - b)] \\  \\

\sf \: =  \:   {x}^{2} - ax - (a - b)(2a - b) \\  \\

can be rewritten as

\sf \: =  \:   {x}^{2} - (2a - a)x - (a - b)(2a - b) \\  \\

\sf \: =  \:   {x}^{2} - (2a - a + b - b)x - (a - b)(2a - b) \\  \\

\sf \: =  \:   {x}^{2} - [ (2a -b) -(a -  b)]x - (a - b)(2a - b) \\  \\

\sf \: =  \:   {x}^{2} -(2a -b)x + (a -  b)x - (a - b)(2a - b) \\  \\

\sf \: =  \:  x[ x -(2a -b)] + (a -  b)[ x -(2a - b)]\\  \\

\sf \: =  \:  [ x -(2a -b)] \: [ x + (a -  b)]\\  \\

\sf \: =  \:  (x -2a + b) \: (x + a -  b)\\  \\

Hence,

\boxed{\sf \: {x}^{2} - ax - ( {2a}^{2} - 3ab +  {b}^{2}) = (x -2a + b) \: (x + a -  b) \: } \\  \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions