Math, asked by adinathprakashan, 8 months ago

factorise x²–y²/100 by using appropriate properties ​

Answers

Answered by prince5132
27

GIVEN :-

  • x² - y²/100.

TO FACTORISE :-

  • x² - y²/100 By using appropriate property.

SOLUTION :-

→ x² - y²/100

→ x² - y²/10²

  • [ y²/10² can be written as (y/10)².]

→ (x)² - (y/10)²

  • [ By using identity a² - b² = (a + b)(a - b) ]

(x + y/10) (x - y/10)

Hence the factorized form of x² - y²/100 is (x + y/10) (x - y/10).

EXTRA INFORMATION :-

→ ( x + y )² = x² + 2xy + y²

→ ( x - y )² = x² - 2xy + y²

→ ( x - y ) ( x -y ) = ( x - y )²

→ ( x + y ) ( x + y ) = ( x + y )²

→ x² - y² = ( x + y ) ( x - y )

→ ( x + y + z )² = x² + y² + z² + 2xy + 2yz + 2zx.

→ ( x + a ) ( x + b ) = x² + ( a + b)x + ab.

Answered by AKStark
8

Step-by-step explanation:

<font color="blue">

GIVEN:

 {x}^{2}  -  \frac{ {y}^{2} }{100}

WHAT TO DO:

FACTORISE IT.

IDENTITY USED:

a^2-b^2=(a+b)(a-b)

SOLUTION:

WE CAN WRITE ,

y^2/100=(y/10)^2

 {x}^{2}  -  ({ \frac{y}{10} })^{2}  \\  \\  = (x +  \frac{y}{10} )(x -  \frac{y}{10})

Similar questions