Math, asked by deepa4578, 1 year ago

factorise (x2-y2)3+(y2-z2)3(z2-x2)3/(x-y)3+(y-z) 3+(z-x) 3​

Answers

Answered by MaheswariS
8

Answer:

\frac{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}{(x-y)^3+(y-z)^3+(z-x)^3}=xyz

Step-by-step explanation:

Formula used:

If a+b+c=0 then a^3+b^3+c^3=3abc

since\:(x^2-y^2)+(y^2-z^2)+(z^2-x^2)=0, using the above formula we get

(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3x^2y^2z^2

similarly

(x-y)^3+(y-z)^3+(z-x)^3=3xyz

Now,

\frac{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}{(x-y)^3+(y-z)^3+(z-x)^3}

=\frac{3x^2y^2z^2}{3xyz}

=xyz

Similar questions