factorise : x3 -23x2 +142x -120
Answers
Answered by
2
Answer:(x-1)(x-10)(x-12)
Step-by-step explanation:
let p(x)=X^3-23x^2+142x-120
now we have to take p(x)=p(1)
(1)^3-23(1)^2+142(1)-120
1-23+142-120
143-143=0
here,x-1 is a factor of p(x)
f(x)=p(x)/(x-1)
x-1)x^3-23x^2+142x-120(x^2-22x+120
x^3-X^
(-) (+)
-22x^2+142x-120
-22x^2+22x
(+) (-)
120x-120
120x-120
(-) (+)
0
so, f(x)=x^2-22x+120
so,
p(x)=(x-1)f(x)
= (x-1)(x^2-22x+120)
we factorized x^2-22x+120
=x^2-22x+120
=x^2-12x-10x+120
=x(x-12)-10(x-12)
=(x-10)(x-12)
so p(x)=(x-1)(x-10)(x-12)
Similar questions