Math, asked by daksharora2406, 10 months ago

Factorise x3+7x2+7x-15 by factor theorem

Answers

Answered by amitnrw
36

Given :  x³ + 7x² + 7x - 15

To Find : Factorise

Solution:

x³ + 7x² + 7x - 15

x = 1

=  1³ + 7(1)² + 7(1) - 15

= 1 + 7 + 7 - 15

= 15 - 15

= 0

Hence x - 1 is one of the factor

               x² + 8x + 15

            _______________

x - 1   _|  x³ + 7x² + 7x - 15  |_

              x³ - x²

           _____________

                     8x²  + 7x  - 15  

                     8x²  - 8x

                  ______________

                              15x  - 15

                              15x  - 15

                       ____________

                                   0

                           _______

x³ + 7x² + 7x - 15  = (x - 1)(x² + 8x + 15)

x² + 8x + 15

= x² + 5x + 3x + 15

= x(x + 5) + 3(x + 5)

= (x + 5)(x + 3)

x³ + 7x² + 7x - 15   = (x-1)(x + 5)(x + 3)

Learn More:

Factorize 4(x2+7x)2–8(x2+7x)(2x-1) + 4(2x-1)2 - Brainly.in

https://brainly.in/question/18251756

find the value of x by factorization, x2-8x+1280=0 - Brainly.in

https://brainly.in/question/7343350

8. Factorize 6n² -1 -2. If the factors are the measures of sides of a ...

https://brainly.in/question/18645339

Answered by MaheswariS
11

\underline{\textsf{Given:}}

\mathsf{Polynomial\;is\;x^3+7x^2+7x-15}

\underline{\textsf{To find:}}

\mathsf{Factors\;of\;x^3+7x^2+7x-15}

\underline{\textsf{Solution:}}

\textsf{Factor theorem:}

\boxed{\mathsf{(x-a)\;is\;a\;factor\;P(x)\;\iff\;P(a)=0}}

\mathsf{Let\;P(x)=x^3+7x^2+7x-15}

\mathsf{Sum\;of\;the\;coefficients=1+7+7-15=0}

\therefore\mathsf{(x-1)\;is\;a\;factor\;of\;P(x)}

\mathsf{When\;x=-3}

\mathsf{P(-3)=(-3)^3+7(-3)^2+7(-3)-15}

\mathsf{P(-3)=-27+63-21-15}

\mathsf{P(-3)=63-63}

\mathsf{P(-3)=0}

\therefore\mathsf{(x+3)\;is\;a\;factor}

\mathsf{When\;x=-5}

\mathsf{P(-5)=(-5)^3+7(-5)^2+7(-5)-15}

\mathsf{P(-5)=-125+175-35-15}

\mathsf{P(-5)=175-175}

\mathsf{P(-5)=0}

\therefore\mathsf{(x+5)\;is\;a\;factor}

\underline{\textsf{Answer:}}

\mathsf{x^3+7x^2+7x-15=(x-1)(x+3)(x+5)}

\underline{\textsf{Find more:}}

Use remainder theorem to factorize: 2x^3+3x^2-9x-10

https://brainly.in/question/2750302

Using factor theorem, factorize each of the following polynomials: (i) x3 – 6x2 + 3x + 10 (ii) 2y3 – 5y2 – 19y + 42

https://brainly.in/question/18561792

Similar questions