Math, asked by cristianokapil10167, 1 year ago

Factorise
x³+x²-16x+20

Answers

Answered by tushar0007
7

x³ + x² - 16x + 20

= x³ - 2x² + 3x² - 6x - 10x + 20

= x²(x - 2) + 3x(x - 2) - 10(x - 2)

= (x² + 3x - 10)(x - 2)

= (x² - 2x + 5x - 10)(x - 2)

= [x(x - 2)+5(x - 2)](x - 2)

= [(x - 2)(x+5)](x - 2)

= (x - 2)(x + 5)(x - 2).

Answered by ravilaccs
0

Answer:

(x + 5) * (x - 2^{)2} is the solution for the given equation

Step-by-step explanation:

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3+x2

Group 2:  -16x+20

Pull out from each group separately :

Group 1:   (x+1) • (x2)

Group 2:   (4x-5) • (-4)

Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

Find roots (zeroes) of :       F(x) = x3+x2-16x+20

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  20.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,4 ,5 ,10 ,20

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

  -1       1         -1.00        36.00    

       -2       1    -2.00        48.00    

  -4       1    -4.00        36.00    

     -5       1    -5.00        0.00      x+5

     -10    1         -10.00        -720.00    

     -20   1    -20.00       -7260.00    

     1       1     1.00        6.00    

     2       1        2.00        0.00      x-2

     4       1        4.00        36.00    

     5       1        5.00        90.00    

     10       1        10.00        960.00    

     20    1     20.00                8100.00    

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

x3+x2-16x+20

can be divided by 2 different polynomials, including by  x-2

Polynomial Long Division

Dividing :  x3+x2-16x+20

                             ("Dividend")

By         :    x-2    ("Divisor")

dividend     x3  +  x2  -  16x  +  20

- divisor  * x2     x3  -  2x2        

remainder         3x2  -  16x  +  20

- divisor  * 3x1         3x2  -  6x    

remainder          -  10x  +  20

- divisor  * -10x0          -  10x  +  20

remainder                0

Quotient :  x2+3x-10  Remainder:  0

Trying to factor by splitting the middle term

Factoring  x2+3x-10

The first term is,  x2  its coefficient is  1 .

The middle term is,  +3x  its coefficient is  3 .

The last term, "the constant", is  -10

Step-1 : Multiply the coefficient of the first term by the constant   1 • -10 = -10

Step-2 : Find two factors of  -10  whose sum equals the coefficient of the middle term, which is   3 .

     -10    +    1    =    -9

     -5    +    2    =    -3

     -2    +    5    =    3    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -2  and  5

                    x2 - 2x + 5x - 10

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-2)

             Add up the last 2 terms, pulling out common factors :

                   5 • (x-2)

Step-5 : Add up the four terms of step 4 :

                   (x+5)  •  (x-2)

            Which is the desired factorization

Reference Link

  • https://brainly.in/question/9512497
Similar questions