English, asked by tejusalunkhe, 1 year ago

factorise x3-x2-32x+60​

Answers

Answered by Anonymous
0

Answer:

Checking for a perfect cube :

1.1    x3+x2-32x-60  is not a perfect cube  

Trying to factor by pulling out :

1.2      Factoring:  x3+x2-32x-60  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3+x2  

Group 2:  -32x-60  

Pull out from each group separately :

Group 1:   (x+1) • (x2)

Group 2:   (8x+15) • (-4)

Bad news !! Factoring by pulling out fails :  

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

1.3    Find roots (zeroes) of :       F(x) = x3+x2-32x-60

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -60.  

The factor(s) are:  

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,3 ,4 ,5 ,6 ,10 ,12 ,15 ,20 , etc  

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -28.00      

     -2       1        -2.00        0.00      x+2  

     -3       1        -3.00        18.00      

     -4       1        -4.00        20.00      

     -5       1        -5.00        0.00      x+5  

     -6       1        -6.00        -48.00      

     -10       1       -10.00        -640.00      

     -12       1       -12.00       -1260.00      

     -15       1       -15.00       -2730.00      

     -20       1       -20.00       -7020.00      

     1       1        1.00        -90.00      

     2       1        2.00        -112.00      

     3       1        3.00        -120.00      

     4       1        4.00        -108.00      

     5       1        5.00        -70.00      

     6       1        6.00        0.00      x-6  

     10       1        10.00        720.00      

     12       1        12.00        1428.00      

     15       1        15.00        3060.00      

     20       1        20.00        7700.00      

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms  

In our case this means that  

  x3+x2-32x-60  

can be divided by 3 different polynomials,including by  x-6  

Polynomial Long Division :

1.4    Polynomial Long Division  

Dividing :  x3+x2-32x-60  

                             ("Dividend")

By         :    x-6    ("Divisor")

dividend     x3  +  x2  -  32x  -  60  

- divisor  * x2     x3  -  6x2          

remainder         7x2  -  32x  -  60  

- divisor  * 7x1         7x2  -  42x      

remainder             10x  -  60  

- divisor  * 10x0             10x  -  60  

remainder                0

Quotient :  x2+7x+10  Remainder:  0  

Trying to factor by splitting the middle term

1.5     Factoring  x2+7x+10  

The first term is,  x2  its coefficient is  1 .

The middle term is,  +7x  its coefficient is  7 .

The last term, "the constant", is  +10  

Step-1 : Multiply the coefficient of the first term by the constant   1 • 10 = 10  

Step-2 : Find two factors of  10  whose sum equals the coefficient of the middle term, which is   7 .

     -10    +    -1    =    -11  

     -5    +    -2    =    -7  

     -2    +    -5    =    -7  

     -1    +    -10    =    -11  

     1    +    10    =    11  

     2    +    5    =    7    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  2  and  5  

                    x2 + 2x + 5x + 10

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x+2)

             Add up the last 2 terms, pulling out common factors :

                   5 • (x+2)

Step-5 : Add up the four terms of step 4 :

                   (x+5)  •  (x+2)

            Which is the desired factorization

Final result :

 (x + 5) • (x + 2) • (x - 6)

Explanation:

Similar questions