Math, asked by kakolikakoli90549, 11 months ago

Factorise:- x³+x²+x+1

Answers

Answered by DHANUS2006
2

Answer:

Hi bro

Step-by-step explanation:

First factor by grouping:

x3+x2−x−1=(x3+x2)−(x+1)=x2(x+1)−1(x+1)=(x2−1)(x+1)

Then notice that x2−1=x2−12 is a difference of squares, so we can use the difference of squares identity [ a2−b2=(a−b)(a+b) ] to find:

(x2−1)(x+1)=(x−1)(x+1)(x+1)=(x−1)(x+1)2

Alternatively, notice that the sum of the coefficients (1+1−1−1) is 0, so x=1 is a zero of this cubic polynomial and (x−1) is a factor.

Divide x3+x2−x−1 by (x−1) to get x2

Answered by Anonymous
1

\LARGE{\underline{\underline{\bf{Solution :}}}}

\rule{200}{2}

\large{\leadsto{\underline{\underline{\bf{ \: To \: Find:}}}}}

As, we have to factorise the given polynomial.

So, we have to find the value of x.

\rule{200}{2}

\large{\leadsto{\underline{\underline{\bf{Explanation :}}}}}

\sf{→x^3 + x^2 + x + 1 = 0} \\ \\ \bf{\gray{Taking \: x^2 \: common \: from \: first \: two \: terms}}  \\ \\ \sf{→x^2(x + 1) + x + 1} \\ \\ \bf{\gray{Taking \: 1 \: common \: from \: last \: two \: terms}} \\ \\ \sf{→x^2(x + 1) + 1(x + 1)} \\ \\ \sf{→(x^2 + 1)(x + 1)} \\ \\ \sf{→x^2 + 1 = 0}\\ \\ \sf{→x^2 = -1} \\ \\ \sf{→x = \sqrt{-1}} \\ \\ \bf{ \: \: \: \:\: \: \: \:\: \: \: \:\: \: \: \:\: \: \: \:\: \:\: \: \: \:\: \: \: \:\: \: \: \:\: \: \: \:\: \:\: \: \: Or\: \: \: \:\: \: \: \:\: \: \: \:\: \: \: \:\: \: \: \:} \\ \\ \sf{→x + 1 = 0} \\ \\ \sf{→x = -1}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\bf{\blue{\underline{\underline{\ \ {\bf{\red{COVID-19}}}}}}}

\setlength{\unitlength}{0.11cm}}\begin{picture}(12,4)\thicklines\put(-10,9){\line(6,5){11}}\put(-11.4,9){\line(6,5){12.5}}\put(-10,9.0){\line(-1,0){1.4}}\put(12,9){\line(-6,5){5.3}}\put(13.4,9.0){\line(-6,5){5.4}}\put(13.4,8.9){\line(-1,0){1.5}}\put(5.8,14.1){\line(-6,5){4.8}}\put(4.5,16.55){\line(-6,5){3.5}}\qbezier(1,10)(-10,15)(1,1)\qbezier(1,10)(10,15)(1,1)\put(4.5,16.47){\line(0,1){2}}\put(5.75,14.){\line(0,1){3}}\put(6.6,13.3){\line(0,1){3.7}}\put(8,13.5){\line(0,1){5}}\put(4.5,18.5){\line(1,0){3.6}}\put(6.7,16.9){\line(-1,0){1}}\put(7,3){$\#StayHome$}\put(9.5,0){$StayHomeSaveLives.us$}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{0.8 cm}}\begin{picture}(12,4)\thicklines\put(4,1){$.$}\put(6,6){\line(1,0){3}}\put(6,6){\line(-3,-2){1}}\put(9.02,6){\line(3,-2){1}}\put(5,5.32){\line(-1,0){1}}\put(10,5.32){\line(5,-1){1.5}}\put(11.5,5.02){\line(0,-1){0.7}}\put(4,5.32){\line(0,-1){1}}\put(4,4.32){\line(1,0){1}}\put(11.5,4.32){\line(-1,0){1.34}}\put(5.82,4.32){\line(1,0){3.4}}\put(5.4,4.32){\circle*{1.2}}\put(5.4,4.32){\circle{0.9}}\put(9.7,4.32){\circle*{1.2}}\put(9.7,4.32){\circle{0.9}}\put(6,5.3){\line(0,1){0.5}}\put(6,5.3){\line(-1,0){0.7}}\put(6,5.8){\line(-3,-2){0.7}}\put(7.2,5.3){\line(0,1){0.5}}\put(7.2,5.3){\line(-1,0){1}}\put(6.2,5.3){\line(0,1){0.5}}\put(6.2,5.8){\line(1,0){1}}\put(8.4,5.3){\line(0,1){0.5}}\put(8.4,5.3){\line(-1,0){1}}\put(7.4,5.3){\line(0,1){0.5}}\put(7.4,5.8){\line(1,0){1}}\put(8.6,5.3){\line(0,1){0.5}}\put(9.7,5.3){\line(-1,0){1.1}}\put(9,5.8){\line(3,-2){0.7}}\put(8.6,5.8){\line(1,0){0.41}}\put(6.0,4.5){$KingTanishq$}\put(6.4,5.4){$ $}\put(6.6,5.4){$ $}\put(6.75,5.4){$ $}\put(7.45,5.4){$ $}\put(7.70,5.4){$ $}\put(7.97,5.4){$ $}\put(8.17,5.4){$ $}\put(8.7,5.4){$ $}\put(8.97,5.4){$ $}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions