Math, asked by priyanshu200449, 1 year ago

factorise x⁴+1/x⁴+1​

Attachments:

Answers

Answered by VarunRathee
1

Answer:

factorise x⁴+1/x⁴+1

2

Answered by Anonymous
9

\huge\star{\underline{\underline{\sf{ Solution:-}}}} \\

\implies{\sf{ \left( x^4 + \dfrac{1}{x^4} + 1 \right) }} \\ \\

\implies{\sf{ \left( x^4 + \dfrac{1}{x^4} + 2 \right) - 1 = \left( x^2 + \dfrac{1}{x^2} \right)^2 - 1^2 }}  \\ \\

\implies{\sf{ \left( x^2 + \dfrac{1}{x^2} - 1 \right) \left(x^2 + \dfrac{1}{x^2} + 1 \right)}} \\ \\

\implies{\sf{ \left( x^2 + \dfrac{1}{x^2} - 1 \right) \left{ \left(x^2 + \dfrac{1}{x^2} + 2 \right) - 1 \right} }} \\ \\

\implies{\sf{ \left( x^2 + \dfrac{1}{x^2} - 1 \right)  \left{ \left(x + \dfrac{1}{x} \right)^2 - 1^2 \right} }} \\ \\

\implies{\sf{ \left( x^2 + \dfrac{1}{x^2} - 1 \right)  \left(x + \dfrac{1}{x}  - 1 \right) \left(x+ \dfrac{1}{x} +1 \right) }} \\ \\

Thus,

\implies\red{\sf{ \left( x^4 + \dfrac{1}{x^4} + 1 \right) = \left( x^2 + \dfrac{1}{x^2} - 1 \right)  \left(x + \dfrac{1}{x}  - 1 \right) \left(x+ \dfrac{1}{x} +1 \right) }}. \\ \\

Extra Dose:

Related Identities:

  • (a²-b²) = (a-b) (a+b)
  • (a+b)² = a² + b² + 2ab
  • ( a -b )² = a² + b² - 2ab
Similar questions