Factorise x⁴ - 625 this question
Answers
Answer:
bro pls make me brainlist.
Step-by-step explanation:
Using the identity a
Using the identity a 2
Using the identity a 2 −b
Using the identity a 2 −b 2
Using the identity a 2 −b 2 =(a+b)(a−b)
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 )
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25)
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x 2
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x 2 +25)=(x−5)(x+5)(x
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x 2 +25)=(x−5)(x+5)(x 2
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x 2 +25)=(x−5)(x+5)(x 2 +25)
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x 2 +25)=(x−5)(x+5)(x 2 +25)Hence, x
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x 2 +25)=(x−5)(x+5)(x 2 +25)Hence, x 4
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x 2 +25)=(x−5)(x+5)(x 2 +25)Hence, x 4 −625=(x−5)(x+5)(x
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x 2 +25)=(x−5)(x+5)(x 2 +25)Hence, x 4 −625=(x−5)(x+5)(x 2
Using the identity a 2 −b 2 =(a+b)(a−b) Using the above identity, the expression x 4 −625 can be factorised as follows:x 4 −625=(x 2 ) 2 −(25) 2 =(x 2 −25)(x 2 +25)=(x−5)(x+5)(x 2 +25)Hence, x 4 −625=(x−5)(x+5)(x 2 +25)
Step-by-step explanation:
(x^2)^2 -25^2
a^2-b^2. = (a+b)(a-b)
(x^2+25)(x^2-25