Factorise_
x⁴ - (x - z )⁴
Answers
Answer:
x4-(x-z)4 is the given expression
let (x-z) = y
So, x^4 - y^4 = (x^2)^2 - (y^2)^2 = {(x^2) + (y^2)} {(x^2) - (y^2)} = {(x^2) + (y^2)} (x+y) (x-y)
Put the value of y into the found expression
= {(x^2) + (y^2)} (x+y) (x-y)
= {x^2+(x-z)^2} (x+x-z) (x-x+z)
= (x^2+x^2+z^2-2xz) (2x-z) (z)
= (2x^2+z^2-2xz) (2x-z)(z)
Answer:
z [ 2x² - 2xz + z² ] [ 2x - z ]
Step-by-step explanation:
x⁴ - (x - z )⁴
Rewriting it in the format a² - b²:
x⁴ - (x - z )⁴ = [ x² ]² - [ (x -z)² ]²
Applying the algebraic identity: a² - b² = (a + b)(a - b):
x⁴ - (x - z )⁴ = [ x² + (x - z)² ] [ x² - (x - z)² ]
Applying (a - b)² = (a² - 2ab + b²):
x⁴ - (x - z )⁴ = [ x² + (x² - 2xz + z²) ] [ x² - (x² - 2xz + z²) ]
Simplify:
x⁴ - (x - z )⁴ = [ x² + x² - 2xz + z² ] [ x² - x² + 2xz - z² ]
x⁴ - (x - z )⁴ = [ 2x² - 2xz + z² ] [ 2xz - z² ]
x⁴ - (x - z )⁴ = z [ 2x² - 2xz + z² ] [ 2x - z ]