Factorise x⁴(y-z)+y⁴(x-x)+z⁴(x-y)
Answers
Answered by
4
Answer:
- (x - y)(y - z)(z - x)(x² + y² + z² + xy + yz + zx)
Step-by-step explanation:
x⁴(y - z) + y⁴(z - x) + z⁴(x - y)
= x⁴y - x⁴z + y⁴z - y⁴x + z⁴x - z⁴y
= x⁴(y - z) - x(y⁴ - z⁴) + yz(y³ - z³)
= x⁴(y - z) - x(y - z)(y + z)(y² + z²) + yz(y - z)(y² + yz + z²)
= (y - z) [x⁴ - xy³ - xyz²- xy²z - xz³ + y³z + y²z² + yz³)
= (y - z) [y³(z - x) + y²(z² - xz) + (y - x)(z³ - x³)]
= (y - z)(z - x) [y³ + y²z + (y - x)(z² + xz + x²)]
= (y - z)(z - x) [y³ + y²z + yz² + xyz + x²y - xz² - x²z - x³]
= (y - z)(z - x) [z²(y - x) + z(y² - x²) + (y³ - x³)]
= (y - z)(z - x)(y - x) [z² + zy + zx + y² + xy + x²]
= - (x - y)(y - z)(z - x)(x² + y² + z² + xy + yz + zx)
Hope this helps! :)
Please mark as brainliest!
Answered by
0
Answer:
Hello hii bye hwjejejjehe hehennenen hwj2ue
Similar questions