Math, asked by saketkumar200506, 3 months ago

Factorise x⁴+y⁴+x²y² ​


hks675711: hello

Answers

Answered by akshitanegi26
2

Answer:

x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)

x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)

x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)

x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2

x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2= {(x^2 + y^2)^2 }- (x^2 + y^2)

x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2= {(x^2 + y^2)^2 }- (x^2 + y^2)Taking (x^2 + y^2) common

x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2= {(x^2 + y^2)^2 }- (x^2 + y^2)Taking (x^2 + y^2) common= (x^2 + y^2)(x^2 +y^2 -1)

x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2= {(x^2 + y^2)^2 }- (x^2 + y^2)Taking (x^2 + y^2) common= (x^2 + y^2)(x^2 +y^2 -1)

Answered by lalitapanwar68804
0

Answer:

In pic

Step-by-step explanation:

hope will help u!!!!!!!!!!!!!!!

Attachments:
Similar questions