Factorise x⁴+y⁴+x²y²
Answers
Answer:
x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)
x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)
x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)
x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2
x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2= {(x^2 + y^2)^2 }- (x^2 + y^2)
x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2= {(x^2 + y^2)^2 }- (x^2 + y^2)Taking (x^2 + y^2) common
x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2= {(x^2 + y^2)^2 }- (x^2 + y^2)Taking (x^2 + y^2) common= (x^2 + y^2)(x^2 +y^2 -1)
x^4 +(x^2*y^2 )+y^4 + (x^2*y^2 )-(x^2*y^2)=x^4+ 2(x^2*y^2) + y^4 - (x^2*y^2)= {(X^2)^2 + 2 (x^2*y^2) + (y^2)^2 }- (x^2* y^2)The above statement is in the form (a+ b)^2= a^2 + 2a*b +b^2= {(x^2 + y^2)^2 }- (x^2 + y^2)Taking (x^2 + y^2) common= (x^2 + y^2)(x^2 +y^2 -1)
Answer:
In pic
Step-by-step explanation:
hope will help u!!!!!!!!!!!!!!!