Math, asked by singhudaypartap2at4o, 1 year ago

Factorise x8-y8. What is the answer

Answers

Answered by hannahmaria123
473

Answer:

x⁸-y⁸ = ( x⁴)² - ( y⁴)²

= (x⁴+y⁴) (x⁴-y⁴)       [ Using identity a²-b² = (a+b) (a-b)]

= (x⁴+y⁴) [(x²)² - (y²)²]

= (x⁴+y⁴) (x²+y²) (x²-y²)

= (x⁴+y⁴) (x²+y²) (x+y) (x-y) ⇒ Answer

pls mark me the brainliest and thank me :)

Answered by Swarup1998
22

\boxed{x^{8}-y^{8}=(x^{4}+y^{4})(x^{2}+y^{2})(x+y)(x-y)}

Step-by-step explanation:

Now, x^{8}-y^{8}

=(x^{4})^{2}-(y^{5})^{2}

  • Hint: using a^{mn}=(a^{m})^{n}

=(x^{4}+y^{4})(x^{4}-y^{4})

  • Hint: using the identity a^{2}-b^{2}=(a+b)(a-b)

=(x^{4}+y^{4})[(x^{2})^{2}-(y^{2})^{2}]

  • Hint: using a^{mn}=(a^{m})^{n}

=(x^{4}+y^{4})(x^{2}+y^{2})(x^{2}-y^{2})

  • Hint: using the identity a^{2}-b^{2}=(a+b)(a-b)

=(x^{4}+y^{4})(x^{2}+y^{2})(x+y)(x-y)

  • Hint: using the identity a^{2}-b^{2}=(a+b)(a-b)

This is the required factorization.

Note:

Let us understand that the expression (x^{8}-y^{8}) has four factors. They are

  1. x^{4}+y^{4}
  2. x^{2}+y^{2}
  3. x+y
  4. x-y
Similar questions