Math, asked by TristAnnie1251, 8 months ago

Factorise xsquare+ 5√3x + 12

Answers

Answered by Anonymous
92

\sf answer=\boxed{\bf\large\orange{\underline{(x + \sqrt{3}) (x+ 4\sqrt{3})}}}

GIVEN:-

\sf \bf {x^2 + 5\sqrt{3x}+ 12}

TO FIND :-

↦ factors

SOLUTION :-

\sf \bf {x^2 + 5\sqrt{3x}+ 12}

AS WE KNOW,

\boxed{\sf\underline{(x + a)(x+b)=x^{2} + (a+b)x+ab}}

\sf\bold {x^2 + \sqrt{3x}  + 4\sqrt{3x} + 12x^2}

\sf\bf x (x + \sqrt{3}) + 4\sqrt{3}  ( x + \sqrt{3} )

\boxed{\bf\large\underline\pink{{(x + \sqrt{3}) (x+ 4\sqrt{3})}}}

LET'S EXPLORE MORE

\bf\red{{(a+b)} ^{2} ⟹{a}^{2}+2ab+{b}^{2}}

\bf\green{(a - b)^{2} \implies \: {a}^{2} - 2ab + {b}^{2} }

\bf\red{(a + b)(a - b) \implies \: {a}^{2} - {b}^{2} }

\bf\green{(x + a)(x \: + b) \implies \: {x}^{2} + (a + b)x + ab}

\bf\red{(a + b)^{3} \implies \: {a}^{3} + 3 {a}^{2} b +3a {b}^{2} + {b}^{3} }

\bf\green{(a - b)^{3} \implies \: {a}^{3} - 3 {a}^{2} b +3a {b}^{2} - {b}^{3}}

Answered by Anonymous
19

 \red{\large{\underline{\underline{ \rm{Question }}}}}

Factorise :-

 {x}^{2}   +  5 \sqrt{3x}  + 12

How to Solve :-

When a trinomial is of the form ax² + bx + c or ( a + bx + cx² ), split b (the coefficient of x in the middle term) into two parts such that the sum of these two parts is equal to b and the product of these two parts is equal to the product of a and c. Then factorise by the grouping method.

 \red{\large{\underline{\underline{ \rm{</strong><strong>Solu</strong><strong>tion</strong><strong> }}}}}

The given equation is

 {x}^{2}  +  5\sqrt{3x}  + 12

We split  5\sqrt{3} into two parts such that the sum of these two parts is  5\sqrt{3} and the product is 12.

As :

 (4\sqrt{3}  +  \sqrt{3} ) =  5\sqrt{3}

(4 \sqrt{3}  \times  \sqrt{3} ) = 12

We have,

 {x}^{2}  +  5\sqrt{3x}  + 12

 =  {x}^{2}  + 4 \sqrt{3x}  +  \sqrt{3x}  + 12

 = x(x +  4\sqrt{3} ) \:  \sqrt{3} (x +  4\sqrt{3} )

 = { \green{ \underline{\boxed{(x +  4\sqrt{3} ) \: (x +  \sqrt{3}) }}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \rm{ \underline{ \underline{</u><u>Some</u><u> </u><u>\</u><u>:</u><u> </u><u>I</u><u>dentities</u><u>:</u><u>}}}

 \purple{ {(a + b)}^{2}  =  {a}^{2}  +   {b}^{2}  + 2ab}

 \blue{ {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab}

 \purple{ (a+ b) \: (a - b) =  {a}^{2} -  {b}^{2}  }

 \blue{(x + a) \: (x + b) =  {x}^{2} + (a + b)x + ab}

 \purple{ {(a + b)}^{2}  +  {(a - b)}^{2} = 2( {a}^{2} +  {b}^{2} ) }

 \blue{ {(a + b)}^{2}  -  {(a - b)}^{2}  = 4ab}

Similar questions