Factorise xy^9-x^9y
Please help
Answers
Answered by
2
Answer:
Given :-
➪ xy⁹ - x⁹y
Solution :-
➪ xy⁹ - x⁹y
➭ xy(y⁸ - x⁸)
➭ xy{(y⁴)² - (x⁴)²}
➭ xy(y⁴ + x⁴) (y⁴ - x⁴)
➭ xy(y⁴ + x⁴) {(y²)² - (x²)²}
➭ xy(y⁴ + x⁴) (y² + x²) (y² - x²)
➭ xy(y⁴ + x⁴) (y² + x²) {(y)² - (x)²}
➭ xy(y⁴ + x⁴) (y² + x²) (y + x) (y - x)
➭ xy(x⁴ + y⁴) (x² + y²) (x + y) (-1) (x - y) [ (b - a) = -1(a - b)]
- xy(x⁴ + y⁴) (x² + y²) (x + y) (x - y)
∴ The value of xy⁹ - x⁹y is
- xy(x⁴ + y⁴) (x² + y²) (x + y) (x - y)
Answered by
0
Answer:
I will tell you
Step-by-step explanation:
xy⁹ - x⁹y
xy⁹ - x⁹y => xy(y⁸ - x⁸) [ taking common]
xy⁹ - x⁹y => xy(y⁸ - x⁸) [ taking common]=> xy((y⁴)² - (x⁴)²)
BY USING IDENTITY a² - b² = (a+b)(a-b)
xy(y⁴ + x⁴)(y⁴ - x⁴)
xy(y⁴ + x⁴)((y²)² -(x²)²)
xy(y⁴ + x⁴ )(y² + x²)(y² -x²)
xy(y⁴ + x⁴ )(y² + x²)(y+x)(y-x)
Similar questions