Factorise z(5z^2-80)÷5z(z+4)
Answers
Answered by
13
Answer:
Mark this as brainliest please
Step-by-step explanation:
z(5z²-80)/5z(z+4)
Z will cancel out from numerator and denominator
So
5z²-80/5(z+4)
Take 5 common from numerator and cancel it with denominator
Z²-16/z+4
Factorise numerator using the identity a²-b²=(a+b)(a-b)
Z-4 is your answer
Answered by
3
z(5z2-80)/5z(z+4)
Final result :
z2 • (z + 4)2 • (z - 4)
Step by step solution :
Step 1 :
Equation at the end of step 1 :
(5z2 - 80) ((z • ——————————) • z) • (z + 4) 5
Step 2 :
5z2 - 80 Simplify ———————— 5
Step 3 :
Pulling out like terms :
3.1 Pull out like factors :
5z2 - 80 = 5 • (z2 - 16)
Trying to factor as a Difference of Squares :
3.2 Factoring: z2 - 16
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 16 is the square of 4
Check : z2 is the square of z1
Factorization is : (z + 4) • (z - 4)
Equation at the end of step 3 :
((z • (z + 4) • (z - 4)) • z) • (z + 4)
Step 4 :
Equation at the end of step 4 :
(z • (z + 4) • (z - 4) • z) • (z + 4)
Step 5 :
Multiplying exponential expressions :
5.1 z1 multiplied by z1 = z(1 + 1) = z2
Equation at the end of step 5 :
z2 • (z + 4) • (z - 4) • (z + 4)
Step 6 :
Multiplying Exponential Expressions :
6.1 Multiply (z+4) by (z+4)
The rule says : To multiply exponential expressions which have the same base, add up their exponents.
In our case, the common base is (z+4) and the exponents are :
1 , as (z+4) is the same number as (z+4)1
and 1 , as (z+4) is the same number as (z+4)1
The product is therefore, (z+4)(1+1) = (z+4)2
Final result :
z2 • (z + 4)2 • (z - 4)
make it brainliest please
Final result :
z2 • (z + 4)2 • (z - 4)
Step by step solution :
Step 1 :
Equation at the end of step 1 :
(5z2 - 80) ((z • ——————————) • z) • (z + 4) 5
Step 2 :
5z2 - 80 Simplify ———————— 5
Step 3 :
Pulling out like terms :
3.1 Pull out like factors :
5z2 - 80 = 5 • (z2 - 16)
Trying to factor as a Difference of Squares :
3.2 Factoring: z2 - 16
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 16 is the square of 4
Check : z2 is the square of z1
Factorization is : (z + 4) • (z - 4)
Equation at the end of step 3 :
((z • (z + 4) • (z - 4)) • z) • (z + 4)
Step 4 :
Equation at the end of step 4 :
(z • (z + 4) • (z - 4) • z) • (z + 4)
Step 5 :
Multiplying exponential expressions :
5.1 z1 multiplied by z1 = z(1 + 1) = z2
Equation at the end of step 5 :
z2 • (z + 4) • (z - 4) • (z + 4)
Step 6 :
Multiplying Exponential Expressions :
6.1 Multiply (z+4) by (z+4)
The rule says : To multiply exponential expressions which have the same base, add up their exponents.
In our case, the common base is (z+4) and the exponents are :
1 , as (z+4) is the same number as (z+4)1
and 1 , as (z+4) is the same number as (z+4)1
The product is therefore, (z+4)(1+1) = (z+4)2
Final result :
z2 • (z + 4)2 • (z - 4)
make it brainliest please
sweetandsimple64:
make it brainliest
Similar questions