Math, asked by gitasadvocate, 11 months ago

Factorise z²-x²-2x-1

Answers

Answered by Anonymous
14

Answer:

\large\boxed{\sf{(z+x+1)(z-x-1)}}

Step-by-step explanation:

 {z}^{2}  -  {x}^{2}  - 2x - 1 \\  \\  =  {z}^{2}  - ( {x}^{2}  + 2x + 1) \\  \\  =  {z}^{2}  - \left[{(x)}^{2}  + 2( x)(1) +  {(1)}^{2}  \right]\\  \\  =  {z}^{2}  -  {(x + 1)}^{2}  \\  \\  = ( z + x + 1)(z - x - 1)

Concept Map:-

  •  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

  •  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)
Answered by paridarabinarayan9
1

{z}^{2} - {x}^{2} - 2x - 1 \\ \\ = {z}^{2} - ( {x}^{2} + 2x + 1) \\ \\ = {z}^{2} - \left[{(x)}^{2} + 2( x)(1) + {(1)}^{2} \right]\\ \\ = {z}^{2} - {(x + 1)}^{2} \\ \\ = ( z + x + 1)(z - x - 1)\end{gathered}z2−x2−2x−1=z2−(x2+2x+1)=z2−[(x)2+2(x)(1)+(1)2]=z2−(x+1)2=(z+x+1)(z−x−1)

Similar questions