factorization
a3+b3+a+b
Answers
Answered by
2
Given a^3 +b^3 +a + b
a3 + b3 = (a + b) (a^2 - ab + b^2 ).
= (a + b) (a^2 - ab + b^2 )+(a+b)
=(a+b)(a^2 + ab +b^2 +1).
here's your answer! hope it helped u!
Answered by
0
Step-by-step explanation:
Factorise: a3 - b3 - a + b
ANSWER
We know the identity a
3
−b
3
=(a−b)(a
2
+b
2
+ab)
Using the above identity, the equation a
3
−b
3
−a+b can be factorised as follows:
a
3
−b
3
−a+b=(a
3
−b
3
)−(a−b)={(a−b)[(a)
2
+(b)
2
+(a×b)]}−(a−b)= [(a−b)(a
2
+b
2
+ab)]−(a−b)
=(a−b)(a
2
+b
2
+ab−1)
Hence, a
3
−b
3
−a+b=(a−b)(a
2
+b
2
+ab−1)
Similar questions
Computer Science,
4 months ago
Science,
4 months ago
English,
8 months ago
Math,
8 months ago
Math,
1 year ago