Math, asked by ranjanakhade3610, 1 year ago

factorization method​

Attachments:

Answers

Answered by Sharad001
51

Question :-

Factories it

 \implies \sf{  {x}^{2}  - 3 \sqrt{3} x + 6 = 0} \\

Answer :-

→ √3 and 2√3 are factors of it .

Explanation :-

Given equation is ↓

 \rightarrow \: \sf{  {x}^{2}  - 3 \sqrt{3} x + 6 = 0} \\   \\ \rightarrow \sf{ {x}^{2}  -  2\sqrt{3}x -  \sqrt{3}  x  + 6 = 0} \\  \\  \rightarrow \sf{ x(x - 2 \sqrt{3} ) -  \sqrt{3} (x - 2 \sqrt{3} ) = 0} \\  \\ \rightarrow \sf{ (x - 2 \sqrt{3} )(x -  \sqrt{3} ) = 0} \\  \\

• Case 1 ,if

→ x - 2√3 = 0

→ x = 2√3

• Case 2 ,if

→ x - √3 = 0

→ x = √3

Hence √3 and 2√3 are the factors of this Quadratic .

\_________________/

For verification :-

One time out x = √3 ,if we get 0 then we r right .

→(√3)² - 3√3 (√3) +6 = 0

→3 - 3×3 + 6 = 0

→ -6 +6 = 0

→ 0= 0

hence verified .

now put x = 2√3 ,

→ (2√3)² - 3√3(2√3) +6 = 0

→ 4× 3 - 6×3 + 6 = 0

→ 12 -18 +6 = 0

→ -6 + 6 = 0

→ 0 = 0

hence verified.

\_________________/

#answerwithquality

#BAL

Similar questions