Factorize- 1/4(x+y)^2-9/16(x-y)^2
Answers
Solution :
To factorise :
> [ ¼ ( x + y )² ] - [ 9/16 ( x - y )² ]
Each of the terms can be expressed as as square ;
> [ ½ ( x + y ) ]² - [ ¾ ( x - y ) ]² .
The expression , a² - b² can be written as ( a + b )( a - b )
> [ ½ ( x + y ) ]² - [ ¾ ( x - y ) ]² .
> [ ½ ( x + y ) + ¾( x - y) ][ ½( x + y ) - ¾( x - y) ]
> [ ½ x + ½ y + ¾ x - ¾ y ] [ ½ x + ½ y - ¾ x + ¾ y ]
> [ 5/4 x + ¼ y ][ ¼ x + 5/4 y ]
This is the required answer .
________________________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
________________________________________
Answer:
Required Factorisation :-
At first let make them Square
[½ (x + y)²] - [¾ (x - y)²]
Identity to be used :-
[ ½ ( x + y ) + ¾( x - y) ][ ½( x + y ) - ¾( x - y) ]
( ½ x + ½ y + ¾ x - ¾ y )( ½ x + ½ y - ¾ x + ¾ y )
(5/4 x + ¼ y )(¼ x + 5/4 y )
Know More :-
(a - b)² = a² - 2ab + b²
(a + b)(a - b) = a² - b²
(a + b)² = a² + 2ab + b²