factorize 2√2a³-3√3b³
Answers
Answered by
1
U can use identify a^3-b^3
which expands in (a+b)(a²+b²-ab)
which expands in (a+b)(a²+b²-ab)
Answered by
11
Answer :
Now, 2√2 a³ - 3√3 b³
= (√2)³ a³ - (√3)³ b³
= (√2 a)³ - (√3 b)³ [∵ a³b³ = (ab)³]
= (√2 a - √3 b){(√2 a)² + (√2 a × √3 b) + (√3 b)²},
since a³ - b³ = (a - b)(a² + ab + b²)
= (√2 a - √3 b)(2a² + √6 ab + 3b²),
which is the required factorization.
#MarkAsBrainliest
Now, 2√2 a³ - 3√3 b³
= (√2)³ a³ - (√3)³ b³
= (√2 a)³ - (√3 b)³ [∵ a³b³ = (ab)³]
= (√2 a - √3 b){(√2 a)² + (√2 a × √3 b) + (√3 b)²},
since a³ - b³ = (a - b)(a² + ab + b²)
= (√2 a - √3 b)(2a² + √6 ab + 3b²),
which is the required factorization.
#MarkAsBrainliest
Similar questions