Math, asked by alfinroby67, 9 months ago

Factorize 25(3x+1)²-9y²

Answers

Answered by yahyababu7860
0

Answer:

Given,

Factorise the given expression,

\sqrt { 3 } x ^ { 2 } + 10 x + 7 \sqrt { 3 }

3

x

2

+10x+7

3

For factorising, splitting out the middle terms in the given expression, the middle term becomes as follows,

= \sqrt { 3 } x ^ { 2 } + 3 x + 7 x + 7 \sqrt { 3 }=

3

x

2

+3x+7x+7

3

as 7 + 3 = 10 and 7 × 3 = 21

\begin{lgathered}\begin{array} { l } { = \sqrt { 3 } x ( x + \sqrt { 3 } ) + 7 ( x + \sqrt { 3 } ) } \\\\ { = ( \sqrt { 3 } x + 7 ) ( x + \sqrt { 3 } ) } \\\\ { \sqrt { 3 } x ^ { 2 } + 10 x + 7 \sqrt { 3 } = ( \sqrt { 3 } x + 7 ) ( x + \sqrt { 3 } ) } \end{array}\end{lgathered}

=

3

x(x+

3

)+7(x+

3

)

=(

3

x+7)(x+

3

)

3

x

2

+10x+7

3

=(

3

x+7)(x+

3

)

Thus, the factorisation of \sqrt { 3 } x ^ { 2 } + 10 x + 7 \sqrt { 3 }

3

x

2

+10x+7

3

will be (\sqrt3 x+7)(x+\sqrt3)(

3

x+7)(x+

3

)

Step-by-step explanation:

Given,

Factorise the given expression,

\sqrt { 3 } x ^ { 2 } + 10 x + 7 \sqrt { 3 }

3

x

2

+10x+7

3

For factorising, splitting out the middle terms in the given expression, the middle term becomes as follows,

= \sqrt { 3 } x ^ { 2 } + 3 x + 7 x + 7 \sqrt { 3 }=

3

x

2

+3x+7x+7

3

as 7 + 3 = 10 and 7 × 3 = 21

\begin{lgathered}\begin{array} { l } { = \sqrt { 3 } x ( x + \sqrt { 3 } ) + 7 ( x + \sqrt { 3 } ) } \\\\ { = ( \sqrt { 3 } x + 7 ) ( x + \sqrt { 3 } ) } \\\\ { \sqrt { 3 } x ^ { 2 } + 10 x + 7 \sqrt { 3 } = ( \sqrt { 3 } x + 7 ) ( x + \sqrt { 3 } ) } \end{array}\end{lgathered}

=

3

x(x+

3

)+7(x+

3

)

=(

3

x+7)(x+

3

)

3

x

2

+10x+7

3

=(

3

x+7)(x+

3

)

Thus, the factorisation of \sqrt { 3 } x ^ { 2 } + 10 x + 7 \sqrt { 3 }

3

x

2

+10x+7

3

will be (\sqrt3 x+7)(x+\sqrt3)(

3

x+7)(x+

3

)

Answered by srmtkadam298
2

Answer:

=(5(3x+1))²-9y²......(a+b)(a-b)=(a²-b²)

=(5(3x+1)+9y) (5(3x+1)-9y)

Similar questions