Factorize: 27 - 125x3 + 225x2 - 135x
Answers
Answered by
0
Step-by-step explanation:
member the identity
\begin{gathered}( {a - b)}^{3} = ( {a}^{3} - {b}^{3} - 3 {a}^{2} b + 3a {b}^{2} ) \\ try \: to \: apply \: this \: identity \: in \: your \: question \\ {(3)}^{3} - ( {5x)}^{3} - 3( {3)}^{2} (5x) + 3(3)( {5x)}^{2} \\ = 27 - 125 {x}^{3} - 135x + 225 {x}^{2} \\ is \: equal \: to \: given \: polynomial \\ so \:this \: can \: be \: written \: as \\ ( {3 - 5x)}^{3} are \: the \: factors \: of \: given \: polynomial\end{gathered}
(a−b)
3
=(a
3
−b
3
−3a
2
b+3ab
2
)
trytoapplythisidentityinyourquestion
(3)
3
−(5x)
3
−3(3)
2
(5x)+3(3)(5x)
2
=27−125x
3
−135x+225x
2
isequaltogivenpolynomial
sothiscanbewrittenas
(3−5x)
3
arethefactorsofgivenpolynomial
Attachments:
Similar questions