Math, asked by Anonymous, 1 month ago

Factorize 27x³+y³+z³-9xyz​

Answers

Answered by Yugant1913
37

Given that : -

  • 27x³ + y³ + z³ - 9xyz

Solution :-

 \tt\red\longrightarrow \:  {(27x)}^{3} +  {y}^{3}   +  {z}^{3}  - 9xyz \\  \\  \\  \tt\red\longrightarrow {(3x)}^{3}  + ( {y)}^{3}  +  {(</u><u>z</u><u>)}^{3}  - 9xyz \\  \\  \\  \tt\red\longrightarrow {(3x)}^{3} +  {(y) }^{3}  +  {(</u><u>z</u><u>)}^{3}  - 3 \times 3x \times y \times z

  \blue {{\qquad  \underline{\large \bf \underline{using \:  \:  \:  identity :  -  }}}}

  \red{ \sf \: a³ + b³ + c³ - 3abc  =} \\  \red{\sf \:   (a+b+c)(a²+b²+c²-ab-bc-ca)}

 \sf \qquad \qquad \blue{putting a=3x, b=y, c=z}

 \tt \red\longrightarrow(3x + y + z)(9x ^{2}  +  {y}^{2}  +  {z}^{2} - 3xy -  { {y}^{2} }  - 3zx )

Answered by crathod140
4

Step-by-step explanation:

27x³ + y³ + z³– 9xyz

= (3x)^3 + (ʏ)^3 + (ᴢ)^3 - 9xʏᴢ

=(3x)^3 + (ʏ)^3 + (ᴢ)^3 - 3 × 3x × Y × Z

Usɪɴɢ ɪᴅᴇɴᴛɪᴛʏ 8:

a^3 + b^3 + c^3 -3ab =

( a+b+c) (a^2+b^2+c^2 - ab - bc - ca )

[ PUTTING a= 3x , b = y , c= z ]

= (3x + y +z ) ( 9x^2 +y^2 +z^2 -3xy - yz -3zx

Fɪɴᴀʟʟʏ ᴅᴏɴᴇ !..

Similar questions