Math, asked by d9eviswankts7onamisi, 1 year ago

factorize (2a+b)^2-6a-3b-4

Answers

Answered by neerjabinu
292
(2a + b)² - 6a - 3b - 4
(2a + b)² - 3(2a + b) - 4
y² - 3y - 4  [ put y = 2a + b ]
y² - 4y + y - 4 
y(y-4) + 1(y-4)
(y+1)(y-4)
(2a + b + 1)(2a + b - 4)
Answered by hotelcalifornia
57

Answer:

The factorisation of (2a + b)^2 - 6a - 3b- 4 gives (2a + b + 1)(2a + b - 4)=0

To find:

Factorise the given expression (2a + b)^2 - 6a - 3b-4

Solution:

Given that

\begin{array} { c } { ( 2 a + b ) ^ { 2 } - 6 a - 3 b - 4 } \\\\ { ( 2 a + b ) ^ { 2 } - 3 ( 2 a + b ) - 4 = 0 } \end{array}

Assume x=2a+b

\begin{array} { c } { x ^ { 2 } - 3 x - 4 = 0 } \\\\ { x ^ { 2 } - 4 x + x - 4 = 0 } \\\\ { x ( x - 4 ) + 1 ( x - 4 ) = 0 } \\\\ { ( x + 1 ) ( x - 4 ) = 0 } \end{array}

Substitute x=2a+b in the above equation, we will get

(2a + b + 1)(2a + b - 4)=0

Similar questions