Math, asked by tvishagoel18, 10 months ago

Factorize-

35y square + 13y - 12

Whoevers' answer will be quick and correct with full explanation, I will mark as the brainliest.

Answers

Answered by BrainlyConqueror0901
18

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x=\frac{3}{7}\:and\:\frac{-4}{5}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies 35 {y}^{2}  + 13y - 12 = 0 \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Value \: of \: y =?

• According to given quesrtion :

\tt:  \implies  {35y}^{2}  + 13y -  12 = 0 \\  \\\bold{As \: we \: know \: that} \\   \tt:  \implies D =  {b}^{2}  - 4ac \\  \\ \tt:  \implies D=   {13}^{2}  - 4 \times 35 \times  - 12 \\  \\ \tt:  \implies D = 169 - ( - 1680) \\  \\ \tt:  \implies D = 169 + 1680 \\  \\ \tt:  \implies D = 1849 \\  \\  \tt:  \implies  x=  \frac{ - b \pm \sqrt{D} }{2a}  \\  \\ \tt:  \implies x =  \frac{ - 13 \pm \sqrt{1849} }{2 \times 35 }  \\  \\ \tt:  \implies x =   \frac{ - 13 \pm \sqrt{1849} }{70}  \\\\ \tt:\implies x=\frac{-13+43}{70}\:and\:\frac{-13-43}{70} \\\\ \green{\tt \therefore Factors \: are \: x =  \frac{3}{7} \:and\:\frac{-4}{5}}


Anonymous: Awesome Answer
BrainIyMSDhoni: Great :)
Answered by Anonymous
47

Answer:

\underline{\bigstar\:\textbf{According to the Question :}}

:\implies\sf35y^{2} + 13y - 12 = 0 \\\\\texttt{Here, a = 35;\quad b = 13;\quad c = - 12}\\\\{\scriptsize\qquad\bf{\dag}\:\:\texttt{Using Discriminat Formula :}}\\\\:\implies\sf y = \dfrac{- b\pm\sqrt{{b}^2 - 4ac}}{2a}\\\\\\:\implies\sf y = \dfrac{ - 13 \pm \sqrt{{13}^{2} - (4 \times 35 \times - 12)}}{2 \times 35}\\\\\\:\implies\sf y = \dfrac{ - 13\pm \sqrt{169 - ( - 1680)}}{70}\\\\\\:\implies\sf y = \dfrac{ - 13\pm \sqrt{169 + 1680}}{70}\\\\\\:\implies\sf y = \dfrac{ - 13\pm \sqrt{1849}}{70}\\\\\\:\implies\sf y = \dfrac{ - 13 \pm43}{70}\\\\\\:\implies\sf y = \dfrac{ - 13 + 43}{70} \quad or \quad y = \dfrac{ - 13 - 43}{70}\\\\\\:\implies\sf y = \dfrac{30}{70} \quad or \quad y = \dfrac{ -56}{70}\\\\\\:\implies\underline{\boxed{\sf y = \dfrac{3}{7} \quad or \quad y = \dfrac{ -4}{5} }}


Anonymous: perfect
BrainIyMSDhoni: Great :)
Similar questions