Math, asked by rrbrajend810, 5 months ago

Factorize 3m^2-10m+8​

Answers

Answered by Anonymous
4

Solution:-

Method:-1

Given equation

 \rm \implies3 {m}^{2}  - 10m + 8

Split into middle terms , we get

 \rm \implies3 {m}^{2}  - 6m  - 4m + 8 = 0

  \rm \implies3m(m - 2) - 4(m - 2) = 0

 \rm \implies \: (3m - 4)(m - 2) = 0

 \rm \implies3m - 4 = 0 \:  \: and \:  \: m - 2 = 0

 \rm \implies m =  \dfrac{4}{3}  \:  \: and \: m = 2

Method:- 2

Using quadratic formula

 \rm \implies \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

we have equation

 \rm \implies3 {m}^{2}  - 10m + 8

Compare with

 \implies \rm \: a {m}^{2}  + bm + c

So we get

 \rm \implies \: a = 3,b =  - 10 \: and \: c = 8

Put the value on formula

\rm \implies \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

  \rm \implies \: m \:  =  \dfrac{ -  ( - 10) \pm \sqrt{( - 10)^{2}  - 4 \times 3 \times 8} }{2 \times 3}

 \rm \implies \: m =  \dfrac{10 \pm \sqrt{100 - 96} }{6}

 \rm \implies \: m =  \dfrac{10  \pm \sqrt{4} }{6}

 \rm \implies \: m =  \dfrac{10 + 2}{6}  \: and \: m \:  =  \dfrac{10 - 2}{6}

 \rm \implies \: m =  \dfrac{12}{6}  \: and \: m =  \dfrac{8}{6}

 \rm  \implies \: m \:  = 2 \:  \: and \: m \:  =  \dfrac{4}{3}

Similar questions