Math, asked by StormBreaker9735, 1 month ago

FActorize 3x^2+4root3x+3

Answers

Answered by ZaraAntisera
2

Hope it helps you

Step-by-step explanation:

Domain of 3x^2+4√3x+3

\begin{bmatrix}\mathrm{Solution:}\:&\:x\ge \:-1\:\\ \:\mathrm{Interval\:Notation:}&\:[-1,\:\infty \:)\end{bmatrix}

Range of 3x^2+4√3x+3

\begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:3\:\\ \:\mathrm{Interval\:Notation:}&\:[3,\:\infty \:)\end{bmatrix}

Extreme points  of  3x^2+4√3x+3

\mathrm{Minimum}\left(-1,\:3\right)

\mathrm{Suppose\:that\:}x=c\mathrm{\:is\:a\:critical\:point\:of\:}f\left(x\right)\mathrm{\:then,\:}

\mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}

\mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>\:0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:minimum.}

\mathrm{If\:}f\:'\left(x\right)\mathrm{\:is\:the\:same\:sign\:on\:both\:sides\:of\:}x=c

\mathrm{\:then\:}x=c\mathrm{\:is\:neither\:a\:local\:maximum\:nor\:a\:local\:minimum.}

\mathrm{Vertex\:of}\:3x^2+4\sqrt{3}x+3:\quad \mathrm{Minimum}\space\left(-\frac{2\sqrt{3}}{3},\:-1\right)

\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=ax^2+bx+c\:\mathrm{is}\:x_v=-\frac{b}{2a}

\mathrm{The\:parabola\:params\:are:}

a=3,\:b=4\sqrt{3},\:c=3

x_v=-\frac{b}{2a}

x_v=-\frac{4\sqrt{3}}{2\cdot \:3}

Simplify- \frac{4\sqrt{3} }{2*3} ; -\frac{2\sqrt{3} }{3}

x_v=-\frac{2\sqrt{3}}{3}

Plug in x_v = - \frac{2\sqrt{3} }{3} to find y_v \ value

y_v=-1

\mathrm{Therefore\:the\:parabola\:vertex\:is}

\left(-\frac{2\sqrt{3}}{3},\:-1\right)

\mathrm{If}\:a<0,\:\mathrm{then\:the\:vertex\:is\:a\:maximum\:value}

\mathrm{If}\:a>0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}

a = 3

\mathrm{Minimum}\space\left(-\frac{2\sqrt{3}}{3},\:-1\right)

Similar questions