Factorize:4(x-y)^2-12(x-y)(x+y)+9(x+y)^2
Answers
Answered by
4
Let, (x + y) = a
(x - y) = b
××××××××××××××××
4b² - 12ab + 9a²
(2b)² - 2(6ab) + (3a)²
=========
By formula, (a - b)²=a²+b²-2ab
=========
(2b - 3a)²
=> [ 2(x - y) - 3(x + y)] ²
=> [ 2x - 2y - 3x - 3y]²
=> ( -x - 5y)² or (x + 5y)²
Factorized..
I hope this will help you
(-:
(x - y) = b
××××××××××××××××
4b² - 12ab + 9a²
(2b)² - 2(6ab) + (3a)²
=========
By formula, (a - b)²=a²+b²-2ab
=========
(2b - 3a)²
=> [ 2(x - y) - 3(x + y)] ²
=> [ 2x - 2y - 3x - 3y]²
=> ( -x - 5y)² or (x + 5y)²
Factorized..
I hope this will help you
(-:
BhavyaNanda2003:
thanks man
Answered by
6
Given Equation is 4(x - y)^2 - 12(x - y)(x + y) + 9(x + y)^2
= > 4(x^2 - 2xy + y^2) - 12(x^2 - y^2) + 9(x^2 + y^2 + 2xy)
= > 4x^2 - 8xy + 4y^2 - 12x^2 + 12y^2 + 9x^2 + 9y^2 + 18xy
= > x^2 + 10xy + 25y^2
= > x^2 + 5xy + 5xy + 25y^2
= > x(x + 5y) + 5y(x + 5y)
= > (x + 5y)(x + 5y)
= > (x + 5y)^2.
Therefore, Factorization of 4(x - y)^2 - 12(x - y)(x + y) + 9(x + y)^2 = (x + 5y)^2.
Hope this helps!
= > 4(x^2 - 2xy + y^2) - 12(x^2 - y^2) + 9(x^2 + y^2 + 2xy)
= > 4x^2 - 8xy + 4y^2 - 12x^2 + 12y^2 + 9x^2 + 9y^2 + 18xy
= > x^2 + 10xy + 25y^2
= > x^2 + 5xy + 5xy + 25y^2
= > x(x + 5y) + 5y(x + 5y)
= > (x + 5y)(x + 5y)
= > (x + 5y)^2.
Therefore, Factorization of 4(x - y)^2 - 12(x - y)(x + y) + 9(x + y)^2 = (x + 5y)^2.
Hope this helps!
Similar questions