Math, asked by dreamindiaproduct, 1 year ago

factorize 4a^2 - 9c^2 - 25 - 12ac

Answers

Answered by Manjula29
0

The question will be :- Factorize 4a² + 9c² - 25 - 12ac

 4a²+9c²-25-12ac

= (2a)²+(3c)²-(5)²-2.2a.3c

Here we will use { (a -b)²( a² +2ab - b²)}

= [(2a)²+2.2a.3c- (3c)]²-(5)²

={(2a-3c)²} - (5)²

next  step we will follow:- ( a² - b²) = ( a +b ) ( a - b)

=(2a-3c+5) (2a-3c-5)

Ans :- (2a-3c+5) (2a-3c-5)

#SPJ3

Answered by pulakmath007
1

\displaystyle \sf{4 {a}^{2} + 9 {c}^{2}  - 25 - 12ac} = (2a - 3c + 5)(2a - 3c - 5)

Correct question : Factorise 4a² + 9c² - 25 - 12ac

Given :

\displaystyle \sf{4 {a}^{2} + 9 {c}^{2}  - 25 - 12ac}

To find :

To factorise the expression

Identity Used :

\displaystyle \sf{ {(a - b)}^{2}  =  {a}^{2}  + {b}^{2}  - 2ab}

\displaystyle \sf{  {a}^{2}  -  {b}^{2} = (a + b)(a - b)  }

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{4 {a}^{2} + 9 {c}^{2}  - 25 - 12ac}

Step 2 of 2 :

Factorise the expression

\displaystyle \sf{4 {a}^{2} + 9 {c}^{2}  - 25 - 12ac}

\displaystyle \sf{ =  {(2a)}^{2} + {(3c)}^{2}   - 12ac - 25}

\displaystyle \sf{ =  {(2a)}^{2} + {(3c)}^{2}   - 2.2a.3c - 25}

\displaystyle \sf{ =  {(2a - 3c)}^{2} - 25} \:  \:  \: \bigg[ \:  \because \:{(a - b)}^{2}  =  {a}^{2}  + {b}^{2}  - 2ab \bigg]

\displaystyle \sf{ =  {(2a - 3c)}^{2} -  {(5)}^{2} }

\displaystyle \sf{ =  (2a - 3c + 5)(2a - 3c - 5)}\:  \:  \: \bigg[ \:  \because \: {a}^{2}  -  {b}^{2} = (a + b)(a - b)  \bigg]

\boxed {\: \:\displaystyle \sf{ \therefore \: \: 4 {a}^{2} + 9 {c}^{2}  - 25 - 12ac} = (2a - 3c + 5)(2a - 3c - 5) \: \:}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find factorisation x⁴+2x²+9

https://brainly.in/question/16207943

2. Factorize: x2 – 9y2 + 2x + 1

https://brainly.in/question/50568785

#SPJ3

Similar questions