Math, asked by ulhaqnadeem097, 8 hours ago

Factorize 64/125x³–8 96/25x² +48/5x​

Answers

Answered by ItzAshi
315

Step-by-step explanation:

{\large{\rm{\underline{\red{Given  \: Equation :}}}}} \\

{\bold{\sf{❍ \:  \:  \:  \:  \:  \Big(\frac{64}{125}\Big)x³  \: - \:  8 \:  -  \: \Big(\frac{96}{25}\Big)x²  \: +  \: \Big(\frac{48}{5}\Big)x}}} \\  \\

We will simply write in the cube format

{\bold{\sf{⟼  \:  \:  \:  \:  \: {\Big(\frac{4}{5}\Big)}^{3} \: x³  \: -  \: (2)³  \: - \:  6{\Big(\frac{4}{5}\Big)}^{2} \: x²  \: + \:  12\Big(\frac{4}{5}\Big)x}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  {\Big(\frac{4x}{5}\Big)}^{3} \:  - \:  (2)³ \:  - \:  6{\Big(\frac{4x}{5}\Big)}^{2} \:  +  \: 12\Big(\frac{4x}{5}\Big) \:  \:  ...  \: Equation 1}}} \\  \\

{\bold{\rm{Let's  \: assume \:  \frac{4x}{5}  \: = \:  a}}} \\  \\

Substituting the assumed value of a in Equation 1

{\bold{\sf{⟼ \:  \:  \:  \:  \:  a³ \:  -  \: (2)³  \: -  \: 6a²  \: +  \: 12a}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  a³  \: - \:  (-6a²)  \: +  \: 12a  \: - \:  (2)³ \: ... \:  Equation 2}}} \\  \\

The above equation is in the form of identity :

{\bold{\rm{\orange{(a + b)³  \: = \:  a³ \:  -  \: 3a²b \:  +  \: 3ab² \:  -  \: b³}}}} \\  \\

Expressing the Equation 2 as per the identity we get,

{\bold{\sf{⟼ \:  \:  \:  \:  \:  a³ \:  -  \: (3 × a² × 2) \:  - \:  (3 × a × 2²)  \: + 2³ \:  ...  \: Equation 3}}} \\  \\

The Equation 3 is in the form of identity :

{\bold{\rm{\orange{(a - b)³  \: = \:  a³  \: - \:  3ab(a - b)  \: -  \: b³}}}} \\  \\

Simplyfing as per the above identify we get,

{\bold{\sf{⟼  \:  \:  \:  \:  \: a³ \:  -  \:  6a(a - 2)  \: -  \: (2)³}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  (a - 2)³}}} \\  \\

{\bold{\rm{Putting \:  a  \: = \:   \: \frac{4x}{5}  \: we \:  get}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \: {\Big[\Big(\frac{4x}{5}\Big) \:  -  \: 2\Big]}^{3}}}} \\  \\

Taking out 2 as a common factor

{\bold{\sf{⟼ \:  \:  \:  \:  \:  (2)³  \: \Big[\Big(\frac{2x}{5}\Big)  \: - 1 \: \Big]³}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \: 8  {\Big(\frac{2x \:  - \:  5}{5}\Big)}^{3}}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \frac{8}{5³}  \: (2x  \: - \:  5)³}}} \\  \\

Answered by rishikasrivastav88
6

Step-by-step explanation:

here is the answer of your question hope it's helpful for you

Attachments:
Similar questions