Factorize: 8 x^3 + 64 y^3 +125 z^3 -120xyz.
Answers
Answered by
3
Solution:
/* We know the algebraic
identity :
x³+y³+z³-3xyz = (x+y+z)(x²+y²+z²-xy-yz-zx) */
Now ,
8x³+64y³+125z³-120xyz
= (2x)³+(4y)³+(5z)³-3*2x*4y*5z
=(2x+4y+5z)[(2x)²+(4y)²+(5z)²-(2x)(4y)-(4y)(5z)-(5z)(2x)]
=(2x+4y+5z) [4x²+16y²+25z²-8xy-20yz-10zx]
••••
Answered by
0
Answer:
8x³+64y³+125z³-120xyz
= (2x)³+(4y)³+(5z)³-3*2x*4y*5z
=(2x+4y+5z)[(2x)²+(4y)²+(5z)²-(2x)(4y)-(4y)(5z)-(5z)(2x)]
=(2x+4y+5z) [4x²+16y²+25z²-8xy-20yz-10zx]
thank you
Step-by-step explanation:
Similar questions
English,
7 months ago