factorize 9x²-6b²x-(a⁴-b⁴)=0
Answers
Answered by
56
Solution :
9x² - 6b²x - ( a⁴ - b⁴ ) = 0
=> 9x² - 6b²x - ( a²+b² )( a² - b² ) = 0
=>9x²-3(a²+b²)x+3(a²-b²)x-(a²+b²)(a²-b²)=0
=> 3x[3x-(a²+b²)]+(a²-b²)[3x-(a²+b²)]=0
=> [3x - (a²+b²)][ 3x + ( a² - b² ) ] = 0
=> [3x - (a²+b²)]=0 or [3x+(a²-b²)] = 0
=> x = ( a² + b² )/3 or x = ( b² - a² )/3
••••
9x² - 6b²x - ( a⁴ - b⁴ ) = 0
=> 9x² - 6b²x - ( a²+b² )( a² - b² ) = 0
=>9x²-3(a²+b²)x+3(a²-b²)x-(a²+b²)(a²-b²)=0
=> 3x[3x-(a²+b²)]+(a²-b²)[3x-(a²+b²)]=0
=> [3x - (a²+b²)][ 3x + ( a² - b² ) ] = 0
=> [3x - (a²+b²)]=0 or [3x+(a²-b²)] = 0
=> x = ( a² + b² )/3 or x = ( b² - a² )/3
••••
Answered by
25
Answer:
Step-by-step explanation:Solution : Hey mate, here you go
9x² - 6b²x - ( a⁴ - b⁴ ) = 0
=> 9x² - 6b²x - ( a²+b² )( a² - b² ) = 0
=>9x²-3(a²+b²)x+3(a²-b²)x-(a²+b²)(a²-b²)=0
=> 3x[3x-(a²+b²)]+(a²-b²)[3x-(a²+b²)]=0
=> [3x - (a²+b²)][ 3x + ( a² - b² ) ] = 0
=> [3x - (a²+b²)]=0 or [3x+(a²-b²)] = 0
=> x = ( a² + b² )/3 or x = ( b² - a² )/3
Hope this helps you, please mark me as brainliest
Similar questions