FACTORIZE
(a) (2x+2/x)^3
(b) (4/5x-2)^3
Answers
Answer:
Step-by-step explanation:
✌️Hope
Its help you✌️
Answer:
Step-by-step explanation:
A.((4 x)/5 - 2)^3
B.(2 x + 2/x)^3
Plots:
Plots
Plots
Alternate forms:
(8 (x^2 + 1)^3)/x^3
8 x^3 + 8/x^3 + 24 x + 24/x
Complex roots:
x = -i
x = i
Roots in the complex plane:
Roots in the complex plane
Properties as a real function:
{x element R : x!=0}
Range
{y element R : y<=-64 or y>=64}
Parity
odd
Series expansion at x = 0:
8/x^3 + 24/x + 24 x + O(x^2)
(Laurent series)
Series expansion at x = ∞:
8 x^3 + 24 x + 24/x + O((1/x)^2)
(Laurent series)
Derivative:
d/dx((2 x + 2/x)^3) = (24 (x^2 - 1) (x^2 + 1)^2)/x^4
Indefinite integral:
integral(2/x + 2 x)^3 dx = 2 (x^4 + 6 x^2 - 2/x^2 + 12 log(x)) + constant
(assuming a complex-valued logarithm)
Local maximum:
max{(2 x + 2/x)^3} = -64 at x = -1
Local minimum:
min{(2 x + 2/x)^3} = 64 at x = 1
Series representations:
(2/x + 2 x)^3 = sum_(n=-∞)^∞ ( piecewise | 8 | (n = -3 or n = 3)
24 | (n = -1 or n = 1)) x^n
(2/x + 2 x)^3 = sum_(n=-∞)^∞ ( piecewise | 4 (-1)^n (8 + 3 n + n^2) | n>3
96 | n = 2
64 | n = 0
-96 | n = 3) (-1 + x)^n
Integral representation:
(1 + z)^a = ( integral_(-i ∞ + γ)^(i ∞ + γ) (Γ(s) Γ(-a - s))/z^s ds)/((2 π i) Γ(-a)) for (0<γ<-Re(a) and abs(arg(z))<π)