Math, asked by sana9251, 1 year ago

Factorize a power 7 - 64a​

Answers

Answered by aryaAM82
33

Step-by-step explanation:

a^7 - 64a

= a(a^6 - 64)

= a{(a³)² - (2³)²}

= a{(a³+2³)(a³-2³)

= a[{(a+2)(a²-2a+4)}{(a-2)(a²+2a+4)}]

*Hope this will help you. plz give me a thank and follow me.

Answered by pulakmath007
3

a⁷ - 64a = a(a + 2)(a - 2)(a² - 2a + 4)(a² + 2a + 4)

Given :

The expression a⁷ - 64a

To find :

To factorise the expression

Formula :

  • a² - b² = ( a + b) ( a - b)

  • a³ + b³ = (a + b)(a² – ab + b² )

  • a³ - b³ = (a - b)(a² + ab + b² )

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

a⁷ - 64a

Step 2 of 2 :

Factorise the expression

 \sf  {a}^{7}  - 64a

 \sf   = a({a}^{6}  - 64)

 \sf   = a \bigg[ {( {a}^{3} )}^{2} - {(8)}^{2}   \bigg]

 \sf = a( {a}^{3} + 8 )( {a}^{3}  -  8 )

 \sf = a( {a}^{3} +  {2}^{3}  )( {a}^{3}  -   {2}^{3}  )

\displaystyle \sf{  =a\bigg[(a + 2)( {a}^{2} - a.2 +  {2}^{2} ) \bigg] \bigg[(a  -  2)( {a}^{2}  +  a.2 +  {2}^{2} ) \bigg] }

\displaystyle \sf{  =a\bigg[(a + 2)( {a}^{2} - 2a + 4)  \bigg] \bigg[(a  -  2)( {a}^{2}  +  2a +  4)  \bigg] }

\displaystyle \sf{  =a(a + 2)(a  -  2)( {a}^{2} - 2a + 4)( {a}^{2}  +  2a + 4) }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. divide : (4x²- 100) ÷ 6(x+5)

https://brainly.in/question/15559404

2. Find the value of the expression a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

Similar questions